

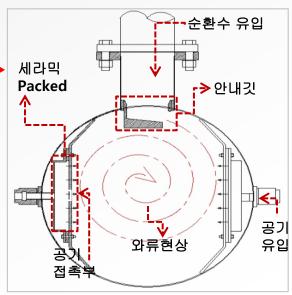
총인처리 System

그린 플러스 공정 구성

실용신안 제0331708호

1. DAF의 역사

- ① 19세기 기포에 광물입자부착 연구
- ② 60년대 정수처리에 적용 (유럽)
- ③ 국내 적용사례 (대규모)
 - 적용대상 : 횡성댐
 - 시설용량 : 20만톤/일


(1단계: 15만톤, 2단계: 5만톤)

• 사업기간

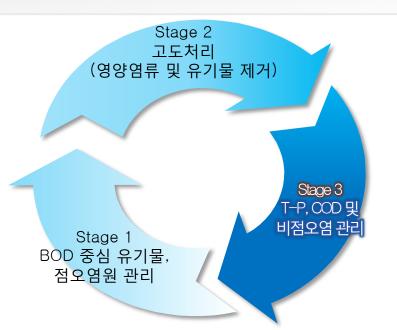
1단계: 2006년, 2단계: 2011년

2. ecoJET Green Plus 장점

- ① 공기용해효율 증대
 - 세라믹 Packed 및 안내깃 설치
 - 멤브레인 디퓨져에 의한 마이크로 버블 형성(40~60µm)
- ② 설비 고장율 최소화를 위한 주요설비 개선
 - 슬러지 제거장치 변경 : 와이어, 체 인→볼스크류 타입

특허 제10-0927673호

총인처리


인은 수중 조류 증식 및 부영양화를 유발시키며

수중 용존 산소의 변화를 통해 수생태계에

악영향을 미치는 수질오염 인자

그러나

인은 효율적으로 제거 가능한 조류 성장 제한인자

인처리 (Phosphorus Treatment)

- 화학적 처리로 95% 이상 제거
- 우리나라 평균유입수질은 4.9ppm 평균유출 수질은 1.3ppm(75% 제거)
- 0.3ppm 수준으로 낮추기 위해서는 안정적인 공법 필요

환경 기술

총인처리

정부는 수질과 수량목표를 가동보 준공시점과 동시에 달성하여 4대강 사업의 가시적 성과를 조기에 이끌어내고자 함

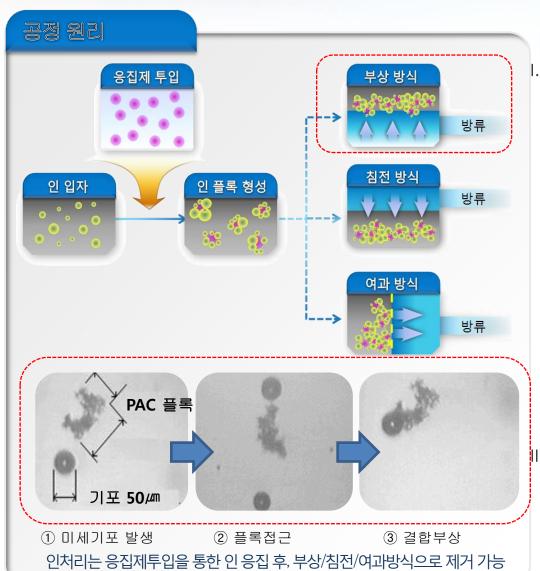
전국 192개 하수처리장 총인처리 시설 설치

수량확보 (16개 보)

- 총 16개 가동보, 총 8억㎡ 수량 확보
- 현재 4대강 살리기 추진본부에서 지속적으로 공정율 모니터링

수질강화 (총인처리)

- 총인처리는 조기완료 목표
- 생태하천 복원, 도시·농촌 비점 오염 관리
- 강화된 수질 기준 ('12. 1. 1 시행)


(단위:mg/L)

현행			개정 ('12.1.1)		
BOD	COD	T-P	BOD	COD	T-P
10	40	2	5	20	0.3

<1일 하수처리장 500m³ 이상 (표지역)>

용존 공기 부상

에코젯 그린 플러스 적용근거

I. PAC에 의한 인 플록의 특징

①PAC 인 플록 특성

• 플록규격 : 35~90 / m

• 비 중: 1.01~1.05

• 침전속도: 0.2~0.4mm/s

• 부상속도: 0.5~1.0mm/s

②저비중 인 플록

: 침전 불량 ➡ 대용량 침전지 필요

③약품 인 플록의 점액성

: 여과막 및 여재 패쇄

④유입수 내 다량 스컴 발생

: 침강성 불량 및 여과막, 여재 폐쇄

⇒역세수 다량 발생

➡인 함유 역세수에 의한 기존설비 악영향

. 부상처리 선정이유

- ①플록 특성 (저비중, 플록이 약함)
- ②저농도, 고농도 부하변동에 대응 용이
- ③유입수의 고농도 SS, 스컴에 대응가능
- ④부상슬러지 분리처리에 의한 슬러지 안정적 처리

		용존 공기 부상조	경사판 부상조	CAF 부상조
	공법특징	처리시간이 15분 이내로 타사의 처리시간에 비해 훨씬 짧다. 수면적부하 최대 140 $\ell/m^2 \cdot$ min로 타부상 비교 1.3배 효율 Tank용적이 작아 설치면적을 적게 차지하며 체류시간이 짧다.	경사판 분리장치에 의하여 큰분리 면적을 갖도록하고 있으며 경사판 들은 60°이상의 각도를 가지고 설치 되어 자연적 청소가 되도록 한다.	부상에너지의 공급원인 기포는 Cavitation Aerator의 회전력에 의 해 수중에 진공영역을 만들어 외부 로부터 공기를 유입하여 임펠러의 작용으로 부상시키는 방법. 일반적으로 전처리에 많이 사용
	장점	•처리효율이 높다. •자동화 공정으로 운전이 용이하다. •유량변동에 강하다 •운전조건 변동이 용이하다. •부상조 전문업체로 실적이 많고 유 지관리가 용이하다.	•충격부하에도 안정된 처리성능을 나타내며 자동운전이 가능하다. •무폐쇠형 공기용존장치를 채택하 므로 운전중 폐쇠하는 현상이 없 다.	•분사노즐 청소 및 지하배관이 불필요하다. •반송수를 사용하지 않아 전력사용 량이 Save 된다.
	단점	•부상조 공정이 조금 복잡하다. •설치시공의 전문성을 요한다.	•운전에 민감하며, 관리가 복잡하다. •효율이 많이 떨어진다. •가동중인 실적이 많이 없다. •외국브랜드로 유지관리가 불편하 며 가격이많이 올라간다.	•설치장소가 넓어진다. •운전에 민감하며, 관리가 복잡 •전처리에 사용되고, 후처리에는 많이 사용하지 않는다. •유지관리 및 부상효율이 많이 떨 어진다.
	부상효율	Packed Air Bleed Type 으로 공기포 화율이 높고 입자가 매우 미세(40~60 μm)하여 SS에 흡착력이 높아 부상력 이 매우 높음.	일부 재순환수를 흡수시켜 Air를 용 존시키므로 Air량이 일정하지 않아 포화율이 떨어져 부상효율면에서 떨어진다.	유입된 외부공기를 임펠러로 미세 화 시키므로 기포입자가 커서 (70~100µm) 미세한 SS는 흡착되지 못하여 부상력 낮음